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Abstract. We address the question of how phonons of various frequencies contribute to the superconducting
transition temperature Tc of a multi-band superconductor by considering the functional derivatives of Tc

with respect to various intraband and interband electron-phonon coupling functions. A general scheme for
computing such functional derivatives is developed. The proofs are given that the functional derivatives
which are diagonal in band indices are linear in phonon energy Ω at small Ω, while the functional derivatives
which are off-diagonal in band indices diverge at Ω = 0 as 1/Ω. The case of a two-band model for MgB2

is treated numerically.

PACS. 74.20.-z Theories and models of superconducting state – 74.70.Ad Metals; alloys and binary com-
pounds (including A15, MgB2, etc.) – 74.62.-c Transition temperature variations

1 Introduction

Bergmann and Rainer [1] introduced an important diag-
nostic tool into the Eliashberg theory of superconductiv-
ity (for a pedagogical review of Eliashberg theory see [2]).
They considered the functional derivative of the super-
conducting transition temperature Tc with respect to the
electron phonon coupling function α2F (Ω) of an isotropic
(dirty) superconductor

δTc

δα2F (Ω)
= lim

η→0

(
Tc

[
α2F (Ω′) + ηδ(Ω′ − Ω)

]
− Tc

[
α2F (Ω′)

])
/η. (1)

The functional Tc[α2F (Ω)] is defined by the Eliashberg
equations at Tc [2]. The function δTc/δα2F (Ω) provides
answer to the question – How are the phonons of fre-
quency Ω effective in contributing to Tc? From the prac-
tical point of view the functional derivative δTc/δα2F (Ω)
gives the change ∆Tc in transition temperature when
α2F (Ω) is changed by a small amount ∆α2F (Ω) (say, by
applying pressure [3], by alloying [4,5], or by implanting
small concentrations of hydrogen into a metal [6])

∆Tc =
∫ +∞

0

dΩ
δTc

δα2F (Ω)
∆α2F (Ω). (2)

The concept of functional derivative δ/δα2F (Ω) was ex-
tended by Rainer and Bergmann [4] and others to several
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thermodynamic properties of isotropic superconductors
(for a review and an extensive list of references see [7]).

The main conclusions of Bergmann and Rainer [1] were
that δTc/δα2F (Ω) is always positive (they were able to
prove this mathematically for the case when the Coulomb
repulsion parameter µ∗ [2] is zero), proportional to Ω
at Ω � 2πTc (we choose units such that � = 1 and
kB = 1) and with a maximum at Ω just above 2πTc.
Hence, the electron coupling to a phonon of any frequency
has a positive contribution to Tc, but the small values of
δTc/δα2F (Ω) in the low frequency region imply that the
changes of α2F (Ω) in this frequency range have no appre-
ciable effect on Tc, in contrast to the influence of the low
frequency part of α2F (Ω) on the electron-phonon coupling
parameter λ

λ = 2
∫ +∞

0

dΩα2F (Ω)/Ω, (3)

which is used in McMillan-type interpolation formulae for
Tc [2].

Daams and Carbotte [8] considered the functional
derivative of Tc with respect to the Fermi surface averaged
electron-phonon coupling function of an anisotropic super-
conductor and found that δTc/δα2F (Ω) diverges at Ω =
0 as 1/Ω. Their explicit calculations for a separable model
of anisotropy α2Fk,k′(Ω) = (1+ak)α2F (Ω)(1+ak′), with
the Fermi surface averages 〈ak〉 = 0 and 〈a2

k〉 �1, showed
that at small Ω δTc/δα2F (Ω) goes negative and diverges
as −1/Ω. Thus in high purity anisotropic superconduc-
tors the electron coupling to low frequency phonons de-
creases Tc, which is analogous to the effect of elastic im-
purity scattering on transition temperature of anisotropic
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superconductors. However, Daams and Carbotte pointed
out that for their choice of anisotropy parameter for Pb
(〈a2

k〉 = 0.04) δTc/δα2F (Ω) becomes negative only be-
low 0.6Tc where α2F (Ω) has very little weight and varies
as Ω2, rendering 1/Ω-divergence in functional derivative
harmless. The net effect of anisotropy in the pairing in-
teraction is to increase the Tc as the virtual scattering
(k ↑,−k ↓) → (k′ ↑,−k′ ↓) → · · · over the Fermi surface
takes advantage of the regions where the pairing interac-
tion is large.

A consensus has emerged (for a review see [9]) that in
order to describe the superconducting properties of a 40
K superconductor MgB2 the Eliashberg theory has to be
applied to a multi-band case with [10] or without [11] gap
anisotropy on different sheets of the Fermi surface. In [11]
the Eliashberg equations for an effective two-band model
of electronic structure and electron-phonon coupling in
MgB2 were solved and the calculated specific heat differ-
ence between the superconducting and the normal state
was in good agreement with experiments over a wide tem-
perature range below Tc. As a model for gap anisotropy
the two-band model is the opposite extreme to the separa-
ble anisotropy considered in [8] – there are four Eliashberg
functions α2Fσσ(Ω), α2Fππ(Ω), α2Fσπ(Ω) and α2Fπσ(Ω),
and, correspondingly, there are four functional derivatives
of Tc with respect to each one of them (the band off-
diagonal functions α2Fσπ and α2Fπσ are related, but are
different as they are proportional to the partial electronic
densities of states in π- and σ-bands, respectively). In this
work we calculate the functional derivatives of Tc for the
two-band model and electron-phonon coupling functions
presented in [11].

The rest of the paper is organized as follows. In Sec-
tion 2 we present the formalism necessary for computation
of the functional derivatives of Tc with respect to various
electron-phonon coupling functions in a multi-band case.
We also prove that the band-diagonal functional deriva-
tives δTc/δα2Fii(Ω), where i is the band index, are pro-
portional to Ω at small Ω, while the functional derivatives
which are off-diagonal in the band indices, δTc/δα2Fij(Ω)
with i �= j, diverge at small Ω as 1/Ω. In Section 3 we
present and discuss our numerical results, and in Section 4
we give a summary.

2 The functional derivatives δTc/δα2Fij(Ω)

In the case of several bands i = 1, 2, . . . with different
partial densities of states Ni the Eliashberg equations
for Tc do not have the form of a Hermitian eigenvalue
problem [11]. That is because the interband electron-
phonon coupling functions α2Fij(Ω) and the correspond-
ing Coulomb repulsion parameters µij are proportional
to Nj and are not symmetric under the exchange of the
band indices i and j, i �= j. As a calculation of the func-
tional derivative of Tc relies on the Hellman-Feynman the-
orem [1], [12] which is valid only for Hermitian matrices, it
is necessary to cast the Eliashberg equations at Tc into a
Hermitian eigenvalue problem. To this end one first takes
the cutoff ωc in the Matsubara frequency sums to be large

enough so that µ∗
ij(ωc) = µij ≡ V c

ijNj, where V c
ij is the

Fermi surface averaged screened Coulomb matrix element
between the states in the bands i and j; clearly V c

ji = V c
ij .

The electron-phonon coupling functions can be written as
α2Fij(Ω) = α2fij(Ω)Nj with α2fij(Ω) = α2fji(Ω). Then
the Eliashberg equations at Tc take the form

φi(n) = πTc

∑
jm

[λ̄ij(n − m)Nj − V c
ijNj ]

φj(m)
|ωm|Zj(m)

, (4)

ωnZi(n) = ωn + πTc

∑
jm

λ̄ij(n − m)Nj
ωm

|ωm| , (5)

λ̄ij(n − m) =
∫ +∞

0

dΩα2fij(Ω)
2Ω

Ω2 + (ωn − ωm)2
, (6)

where φi(n) and Zi(n) are the pairing self-energy and the
renormalization function, respectively, at Matsubara fre-
quency ωn = πTc(2n − 1) in band i. By defining

φ̄i(n) = φi(n)
√

Ni/
√
|ωn|Zi(n). (7)

Equation (4) takes the form of a Hermitian eigenvalue
problem

φ̄i(n) = ε(T )
∑
jm

πT
λs

ij(n − m) − µs
ij√|ωn|Zi(n)

√|ωm|Zj(m)
φ̄j(m), (8)

where the symmetrized λ’s and Coulomb repulsion param-
eters are given by

λs
ij(n − m) =

√
Ni

Nj

∫ +∞

0

α2Fij(Ω)
2Ω

Ω2 + (ωn − ωm)2
,

(9)

µs
ij =

√
Ni

Nj
µij , (10)

and the eigenvalue ε(T ) is 1 when T = Tc. In terms of
λs

ij(n−m) the renormalization function Zi(n) is given by
(see Eq. (5))

ωnZi(n) = ωn + πTc

∑
jm

λs
ij(n − m)

√
Nj

Ni

ωm

|ωm| . (11)

Next, in order not to deal with a matrix of unnecessarily
large size one cuts off the Mutsubara sums in (8) at a
smaller energy ωc, which is large enough so that Zi(n) ≈1
for |ωn| > ωc, and at the same time rescales µs

ij to the new
cutoff ωc by integrating out the high energy part of φ̄j(m)
as described in [2]. The result is that µs

ij in equation (8)
is replaced by µ∗

ij(ωc) where the matrix (in band indices)
µ̂∗(ωc) is related to matrix µ̂s by

µ̂∗(ωc) =
(

1̂ + µ̂s ln
EF

ωc

)−1

µ̂s, (12)

with EF on the order of the total bandwidth. In the case
of a two-band model, which we will examine numerically
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in the next section, the explicit relations between µ∗
ij(ωc)

and µs
ij are (µs

πσ = µs
σπ)

µ∗
σσ(ωc) =

[
µs

σσ + (µs
σσµs

ππ − µs
σπ

2) ln
EF

ωc

]
/D, (13)

µ∗
σπ(ωc) = µs

σπ/D, (14)

µ∗
ππ(ωc) =

[
µs

ππ + (µs
σσµs

ππ − µs
σπ

2) ln
EF

ωc

]
/D, (15)

where D is the determinant of 1̂ + µ̂s ln(EF /ωc)

D = 1 + (µs
σσ + µs

ππ) ln
EF

ωc
=

× (µs
σσµs

ππ − µs
σπ

2)
(

ln
EF

ωc

)2

. (16)

Now it is easy to generalize the procedure for calcu-
lating the functional derivative of Tc given in [12] for a
single-band isotropic superconductor to the case of sev-
eral isotropic bands. One finds

δTc

δα2Fij(Ω)
= −

(
dε(Tc)

dT

)−1
δε(Tc)

δα2Fij(Ω)
(17)

with

δε(Tc)
δα2Fij(Ω)

=

[
πTc

∑
j

Nc∑
n,m=1

φ̄i(n)√
ωnZi(n)

φ̄j(m)√
ωmZj(m)

×
√

Ni

Nj

(
2Ω

Ω2 + (2πT (n− m))2

+
2Ω

Ω2 + (2πT (n + m − 1))2

)
− πT

×
Nc∑

n=1

φ̄2
i (n)

ωnZi(n)

(
2

n−1∑
l=0

2Ω

Ω2 + (2πT l)2

− 2
Ω

)]
/
∑

k

Nc∑
n=1

φ̄2
k(n). (18)

The derivative dε(Tc)/dT (<0) is conveniently calculated
in the process of finding the highest T for which the
largest ε(T ) in equation (8) is equal to 1 and φ̄i(n)
are the components of the corresponding eigenvector
of length dNc, where d is the number of bands and
Nc = [ωc/(2πTc)+0.5], where [· · · ] denotes the integer
part. Note that φ̄i(n)/

√
ωnZi(n) =

√
Niφi(n)/ωnZi(n) =√

Ni∆i(n)/ωn, where ∆i(n) is the gap function in band i
at Matsubara frequency iωn.

For Ω � 2πTc one finds from equation (18) that the
band-diagonal functional derivatives are given by

δε(Tc)
δα2Fii(Ω)

= 2πTcΩ

[∑
i

Nc∑
n,m=1

φ̄i(n)√
ωnZi(n)

φ̄i(m)√
ωmZi(m)

×
(

1
(2πTc(n − m))2

+
1

(2πTc(n + m − 1))2

)

−
Nc∑

n=2

φ̄2
i (n)

ωnZi(n)

n−1∑
l=1

1
(2πTcl)2

]

/
∑

k

Nc∑
n=1

φ̄2
k(n), (19)

and are linear in Ω just like in the one-band isotropic
case [1]. The band-off-diagonal functional derivatives (i �=
j) in the small Ω limit are given by

δε(Tc)
δα2Fij(Ω)

=
2πTc

Ω

Nc∑
n=1

φ̄i(n)√
ωnZi(n)

×
(√

Ni

Nj

φ̄j(n)√
ωnZj(n)

− φ̄i(n)√
ωnZi(n)

)
/
∑

k

Nc∑
n=1

φ̄2
k(n),

(20)

and diverge at Ω = 0 as 1/Ω just like the functional
derivative of Tc with respect to the Fermi surface aver-
aged electron-phonon coupling function of an anisotropic
superconductor [8]. Note that the sum in the numerator of
equation (20) can be written as Ni

∑Nc

n=1 ∆i(n)(∆j(n) −
∆i(n))/ω2

n and the sign of δTc/δα2Fij(Ω) is determined
by the relative size of the gaps ∆i(n) and ∆j(n) near Tc

in the two bands and by the sign of of ∆i(n) near Tc for
low n since the low-n terms give the largest contribution
to the sum because of ω2

n in the denominator.
The results presented so far apply to a supercon-

ductor with any number of bands with isotropic intra-
band and interband interactions (both electron-phonon
and Coulomb). In the next section we present numerical
results for an effective two-band model of MgB2 described
in [11].

3 Numerical results for a two-band model

Following the work of Liu et al. [13], Golubov et al. [11]
reduced the four-band electronic structure and electron-
phonon coupling in MgB2 to an effective two-band model
by exploiting the similarity of the two cylindrical (σ-
bands) and the two three-dimensional (π-bands) sheets
of the Fermi surface. We used the α2F ’s given in [11]
with the coupling parameters (see Eq. (3)) λσσ = 1.017,
λππ = 0.446, λσπ = 0.212 and λπσ = 0.155. The Coulomb
repulsion parameters were determined using the ratios of
the screened Coulomb interaction parameters for MgB2
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α2Fσσ(Ω)/20

δTC/δα2Fσσ(Ω)
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Fig. 1. The band-diagonal functional derivatives and rescaled
electron-phonon coupling functions over the entire phonon en-
ergy range in MgB2.

calculated in [14], µσσ : µππ : µσπ : µπσ = 1.75 : 2.04 :
1.61 : 1.00, the density of states ratio Nπ/Nσ consistent
with the ratio λσπ/λπσ for the spectra that we used, and
using equations (10) and (13–16) with EF set equal to
the π-bandwidth of 15 eV [15] and ωc = 0.5 eV. These
constraints leave the single fitting parameter µσσ which
was fitted to the experimental transition temperature of
39.4 K. The results of the fit were: µ∗

σσ(ωc) = 0.19627,
µ∗

ππ(ωc) = 0.19561 and µ∗
σπ(ωc) = µ∗

πσ(ωc) = 0.04948.
The calculated functional derivatives are shown in

Figures 1–3. In Figure 1 we present the band-diagonal
functional derivatives δTc/δα2Fσσ(Ω), δTc/δα2Fππ(Ω)
and rescaled α2Fσσ(Ω) and α2Fππ(Ω) over the entire
phonon energy range in MgB2. The spectra α2Fσσ(Ω) and
α2Fππ(Ω) are scaled down by a factor of 20 so that their
shapes over the entire range of phonon energies are seen
on the scale set by the size of the corresponding functional
derivatives. This leaves parts of α2Fσσ(Ω) and α2Fππ(Ω)
that are near the maxima in corresponding functional
derivatives invisible, and in Figure 2 we redraw a part
of Figure 1 over a smaller energy range with the electron-
phonon coupling functions shown to scale. As we proved
in Section 2, δTc/δα2Fσσ(Ω) and δTc/δα2Fππ(Ω) are lin-
ear in Ω at small energies and vanish at Ω = 0. Moreover,
both functional derivatives are positive with broad max-
ima at 9–10 times kBTc, similar to what one finds in the
isotropic single-band case [1,12]. The difference in sizes of
the two functional derivatives in Figures 1 and 2 is due
to the difference in sizes of the gap-functions ∆σ(n) and

0 30 60
Ω(meV)

0

0.1

0.2

0.3

0.4

δTC/δα2Fσσ(Ω)

α2Fππ(Ω) α2Fσσ(Ω)

δTC/δα2Fππ(Ω)

Fig. 2. The same as Fig. 1 but over a smaller energy range so
that the the parts of α2Fσσ(Ω) and α2Fππ(Ω) that are near the
maxima in the corresponding functional derivatives are drawn
to scale.

∆π(n) near Tc in the two bands as can be deduced from
equation (18) (or Eq. (19)) by noting that the normal-
ization factor

∑
n(φ̄2

σ(n) + φ̄2
π(n)) is the same for both

functional derivatives and it’s size is largely determined
by φ̄σ(n), which is larger than φ̄π(n) (φ̄σ(1)/φ̄π(1) = 3.4).
Note that in the isotropic one-band case the scale of the
functional derivative of Tc varies roughly as 1/(1+λ) [16]
and from Figure 1 it is clear that such a “rule” cannot
be applied in determining the relative size of the band-
diagonal functional derivatives of Tc in a multi-band case.

In Figure 3 we present the band-off-diagonal functional
derivatives δTc/δα2Fσπ(Ω) and δTc/δα2Fπσ(Ω) together
with the corresponding electron-phonon coupling func-
tions. As we proved in Section 2, both of these functional
derivatives diverge at Ω = 0 as 1/Ω, but they also have
opposite signs. Both α2Fσπ(Ω) and α2Fπσ(Ω) vary as Ω2

in the limit Ω → 0 so that 1/Ω-divergences in the corre-
sponding functional derivatives are integrable, as can be
deduced from equation (2).

The difference in signs between δTc/δα2Fσπ(Ω) and
δTc/δα2Fπσ(Ω) is related to the fact that near Tc ∆σ(n) >
∆π(n) with both gap functions positive at low n (see
Eq. (20) and the subsequent discussion in Section 2).
In order to illustrate the importance of the sign of the
smaller gap ∆π(n) at low n close to Tc, we have computed
the functional derivatives for the case when α2Fππ(Ω),
α2Fσπ(Ω) and α2Fπσ(Ω) were scaled down by a factor
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Fig. 3. The band-off-diagonal functional derivatives and
electron-phonon coupling functions for MgB2.

of 10, with α2Fσσ(Ω) and µ∗
σσ(ωc), µ∗

ππ(ωc), µ∗
σπ(ωc),

µ∗
πσ(ωc) left unchanged. This produced negative λππ−µ∗

ππ,
λπσ−µ∗

πσ and λσπ−µ∗
σπ which resulted in a solution where

∆σ(n) and ∆π(n) near Tc have opposite signs at low n.
The corresponding functional derivatives are shown in Fig-
ure 4. Now, both band-off-diagonal functional derivatives
are negative. Note that the scale of δTc/δα2Fππ is roughly
two orders of magnitude smaller than the other three func-
tional derivatives.

It is important to point out that the calculated Tc for
the parameters in Figure 4 was 43.7 K – substantially
higher (by 10%) than the Tc of 39.4 K obtained for the pa-
rameters used to produce the results given in Figures 1–3.
In fact, even higher Tc of 45.1 K was obtained by set-
ting α2Fππ, α2Fσπ and α2Fπσ identically equal to 0 with
α2Fσσ and all the Coulomb repulsion parameters left the
same – i.e. no attractive interaction in π-π and σ-π chan-
nels! The corresponding functional derivatives were simi-
lar to those shown in Figure 4 and they explain why Tc

is reduced as the couplings α2Fππ, α2Fσπ and α2Fσπ are
turned on from 0: δTc/δα2Fσπ and δTc/δα2Fπσ are both
negative and much bigger in absolute value than than the
positive δTc/δα2Fππ . We finally note that if all interac-
tions, both electron-phonon and Coulomb, in π-π and σ-π
channels are set equal to zero, which effectively reduces the
the two-band model to one-band model, the calculated Tc

was 44.6 K. This is a half degree lower than what was
obtained by turning off only electron-phonon interaction
in π-π and σ-π channels.

0 50 100
Ω(meV)

−0.4

−0.2

0

0.2

0.4

δTC/δα2Fσσ(Ω)

δTC/δα2Fππ(Ω)×100

δTC/δα2Fπσ(Ω)

δTC/δα2Fσπ(Ω)

Fig. 4. The functional derivatives for the case when the
strengths of α2Fππ, α2Fσπ and α2Fπσ were scaled down by
a factor of 10 with α2Fσσ and µ∗(ωc)’s left unchanged com-
pared to those used in Figures 1–3.

4 Summary

We have developed the general formalism for calculating
the functional derivatives of Tc with respect to electron-
phonon coupling functions for a superconductor with sev-
eral bands with isotropic intraband and interband in-
teractions (electron-phonon and Coulomb). We proved
rigorously that the band-diagonal functional derivatives
δTc/δα2Fii(Ω) are linear in Ω at small Ω, as in the
isotropic single band case [1]. At the same time we proved
that the functional derivatives which are off-diagonal in
the band indices, δTc/δα2Fij(Ω) with i �= j, diverge at
small Ω as 1/Ω. The calculation was carried out for a
two-band model of MgB2 using the electron-phonon cou-
pling spectra given in [11] and the ratios of the screened
Coulomb interaction parameters given in [14]. We found
that the band-diagonal functional derivatives are both
positive with broad maxima in the range of 9–10 times
kBTc, similar to the single band isotropic case. How-
ever, the functional derivative with respect to intraband
electron-phonon coupling function for the band with the
smaller gap (π-band) was found to be much smaller than
the corresponding functional derivative for the band with
the larger gap (σ-band). The functional derivatives with
respect to the interband electron-phonon coupling func-
tions were found to diverge as 1/Ω at Ω = 0, but had
opposite signs over the entire range of phonon energies for
the parameters given in [11]. We found that the signs of
these off-diagonal functional derivatives are determined by
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the relative signs of the gap functions near Tc at low Mat-
subara frequencies in the two bands and that, in general,
it is possible to have both band-off-diagonal functional
derivatives negative.

The results found here give a better insight into the
questions – What is the effect of phonons of frequency Ω
on Tc through their couplings to electrons via various band
channels? Are all coupling always contributing positively
to Tc, or are some of them pair-breaking? The answers to
these questions are provided in Figures 1–3.

This work was supported by the Natural Sciences and En-
gineering Research Council of Canada. We are grateful to
O. Jepsen for providing the numerical values of α2F ’s for MgB2

presented in [11] and to S.K. Bose and K.V. Samokhin for their
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2. P.B. Allen, B. Mitrović, in Solid State Physics, Vol. 37,

edited by H. Ehrenreich, F. Seitz, D. Turnbull (Academic,
New York, 1982), pp. 1–92

3. Y.F. Revenko, A.I. Dyachenko, V.M. Svistunov, B.
Shonaih, Sov. J. Low Temp. Phys. 6, 635 (1980)

4. D. Rainer, G. Bergmann, J. Low Temp. Phys. 14, 501
(1974)
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